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ABSTRACT

Creating coordinated multiagent policies in environments with un-
certainty is a challenging problem, which can be greatly simplified
if the coordination needs are known to be limited to specific parts
of the state space, as previous work has successfully shown. In this
work, we assume that such needs are unknown and we investigate
coordination learning in multiagent settings. We contribute a rein-
forcement learning based algorithm in which independent decision-
makers/agents learn both individual policies and when and how to
coordinate. We focus on problems in which the interaction between
the agents is sparse, exploiting this property to minimize the cou-
pling of the learning processes for the different agents. We intro-
duce a two-layer extension of Q-learning, in which we augment
the action space of each agent with a coordination action that uses
information from other agents to decide the correct action. Our
results show that our agents learn both to act coordinate and to act
independently, in the different regions of the space where they need
to, and need not to, coordinate, respectively.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intelli-

gence]: Distributed Artificial Intelligence—Multiagent Systems

General Terms

Algorithms

Keywords

Reinforcement learning, multiagent coordination, local interaction

1. INTRODUCTION

Markov games provide a rich framework to model sequential
decision-making in multiagent systems. However, a Markov game
approach considers a tight coupling between the agents, and typical
solution methods rely on strong joint-observability and joint-action
assumptions that seldom hold in practice. Models that disregard
joint-observability are in general too complex to be solved exactly:
even in the benign case in which all agents share the same pay-
off function (e.g., in Dec-MDPs), the problem of acting optimally
is provably undecidable [2]. This complexity is largely due to the
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tight coupling between the actions of all agents and their effects on
the state of the system and the reward received by each agent.

Interestingly, we observe that in many applications the interac-
tions between the different agents coexisting in a common environ-
ment are not very frequent. Consider, for example, two robots mov-
ing in an office environment coordinating to deliver faxes. They
may need to coordinate to distribute the task among them, but cer-
tainly for most of the time, each robot can move about the environ-
ment disregarding the position and actions of the other robot. Only
occasionally – for example when both robots intend to cross the
same doorway – should they consider the position/actions of the
other robot. Similarly, in robot soccer, an attacker in front of the
opponent’s clear goal and in possession of the ball can act indepen-
dently of its teammates to effectively score [15].

In this work, we investigate the problem of learning these sit-
uations in which the agents need to coordinate. Hence, our driv-
ing question is "to coordinate or not to coordinate". Our approach
seeks to exploit local interactions, allowing the agents to act inde-
pendently whenever possible.

Several authors have previously explored locality of interaction
in different ways. Possible approaches make use of coordination
graphs [8–11], hierarchical task decompositions [6] or decentral-
ized execution of joint policies [15]. As discussed in Section 3, our
approach is closer to those in [14, 16].

In this paper, we frame the problem of coordination learning as a
reinforcement learning (RL) problem. Unlike several of the afore-
mentioned works, we do not assume any prior knowledge on the
structure of the problem, and each agent must learn both how to
complete its individual task and when and how to coordinate. Our
approach takes advantage of the assumed sparse interaction in do-
mains where the multiple agents are loosely coupled. Concretely,
each agent must learn from experience those situations in which
coordination is beneficial. We introduce a two-layer extension of
Q-learning, in which we augment the action space of each agent
with a coordination action that attempts to use information from
the other agents (gathered by means of active perception) to decide
the correct action. Our results show that our agents learn to co-
ordinate when necessary in terms of the received reward and they
independently choose their actions, otherwise.

The paper is organized as follows. In Section 2 we review some
background material on reinforcement learning in single and multi-
agent settings. We describe our approach in Section 3, outlining the
main differences between our approach and those in related works.
In Section 4 we illustrate the application of our algorithm in several
problems of different complexities and conclude in Section 5 with
some final remarks.
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2. BACKGROUND
We review some background on Markov decision processes and

Markov games that we later use in describing our framework and
algorithm.

2.1 Markov decision processes

A Markov decision problem (MDP) describes a sequential de-
cision problem in which an agent must choose the sequence of
actions that maximizes some reward-based optimization criterion.
Formally, an MDP is a tuple M = (X ,A, P, r, γ), where X repre-
sents the state-space, A represents the action-space, Pa(x, y) rep-
resents the transition probabilities from state x to state y when ac-
tion a is taken and r(x, a) represents the expected reward for taking
action a in state x. The scalar γ is a discount factor. The agent must
choose its actions so as to maximize the functional

V ({A(t)} , x) = E

[ ∞∑
t=0

γtR
(
X(t), A(t)

) | X(0) = x

]
,

where X(t) represent the state of the agent/world at time t, A(t)
the action taken by the agent at that time instant, and R(x, a) the
associated random reward.1

A policy is a mapping π : X ×A −→ [0, 1] such that

π(x, a) = P [A(t) = a | X(t) = x] .

When the action sequence {A(t)} is generated by a policy π, we
write V π(x) instead of V ({A(t)} , x). For any finite MDP, there
is at least one policy π∗ such that

V π∗
(x) ≥ V π(x)

for any policy π and state x. Such policy is an optimal policy and
the corresponding value function is compactly denoted as V ∗.

The optimal value function V ∗ verifies Bellman optimality equa-
tion,

V ∗(x) = max
a∈A

[
r(x, a) + γ

∑
y∈X

Pa(x, y)V ∗(y)

]
(1)

from where we can define the optimal Q-function as

Q∗(x, a) = r(x, a) + γ
∑
y∈X

Pa(x, y)V ∗(y). (2)

2.2 Q-learning

From (1) and (2), it is possible to write Q∗ recursively as

Q∗(x, a) = r(x, a) + γ
∑
y∈X

Pa(x, y) max
b∈A

Q∗(y, b).

and a standard fixed-point iteration can be used to compute Q∗. On
the other hand, if P and/or r are unknown, Q∗ can be estimated
using the Q-learning algorithm. Q-learning allows Q∗ to be esti-
mated from empirical data obtained from the actual system, and is
defined by the update rule

Qk+1(x, a) = (1 − αk)Qk(x, a)

+ αk

[
R(x, a) + γ max

b∈A
Qk(X(x, a), b)

]
,

(3)

where Qk(x, a) is the kth estimate of Q∗(x, a), X(x, a) is a X -
valued random variable obtained according to the probabilities de-
fined by P and {αk} is a step-size sequence. R(x, a) and X(x, a)

1We have that r(x, a) = E [R(x, a)].

can be obtained from a generative model or from the actual sys-
tem, not requiring the knowledge of either P or r. Under suitable
conditions, the estimates Qk converge to Q∗ w.p.1 [3].

2.3 Markov games

A tuple Γ =
(
N,X , (Ak), P, (rk), γ

)
defines a N -agent Mar-

kov game (MG), where X , P and γ are as in MDPs, A = ×N
k=1Ak

is the set of joint actions and rk is the expected reward function for
agent k, k = 1, . . . , N . The main differences between an MG and
an MDP lie on the distributed action selection and distributed re-
ward function in the former. In other words, in MGs the transition
probabilities/rewards depend on the actions of all agents and each
agent has its own reward function.

In MGs one must distinguish between an individual policy – a
mapping πk defined over X × Ak – and a joint policy – a vector
π = (π1, . . . , πN ) of individual policies. In multiagent settings,
we refer to a deterministic policy as being a pure policy and a mixed
policy otherwise. We refer to π−k as a reduced policy, obtained
from π by removing the individual policy of agent k.

As in MDPs, the purpose of each agent k is maximize the func-
tional

Vk({A(t)} , x) = E

[ ∞∑
t=0

γtRk

(
X(t), A(t)

) | X(0) = x

]
,

where Rk is the random reward received by agent k. Vk now de-
pends on the actions of all agents, which means that the concept of
“optimal policy” must be replaced by that of equilibrium policy.

Several approaches have been proposed in the RL literature to
extend Q-learning to multiagent domains. Early approaches treated
multiagent learning as several decoupled learning problems. How-
ever, this approach was shown to yield poor results in most prob-
lems, since it failed to capture the interaction between the differ-
ent agents [5, 17]. Subsequent approaches addressed the problem
of learning equilibrium policies in multiagent domains (e.g., [4, 7,
13, 18]). However, most such approaches rely on implicit joint-
observability assumptions that seldom hold in practice. In particu-
lar, most such approaches assume that each agent is able to observe
(a posteriori) the actions taken by other agents. However, this is
seldom the case in practical problems. MG-based approaches also
assume that each agent is able to observe the full state of the game,
when in many situations the agent has only a local perception of
the state of the game.

In this paper, we present a new algorithm for Markov games that
alleviates such joint-observability assumptions, by exploiting the
fact that, in many problems, an agent can actually act “optimally”
requiring minimum information on the other agents.

3. EXPLOITING SPARSE INTERACTION

Consider a very simple problem in which two mobile robots must
navigate a common environment, each trying to reach its own goal
(e.g., see Fig. 1). Each robot has 4 possible actions, “Move North,”
“Move South,” “Move East” and “Move West.” Each action moves
the robot in the corresponding direction with a given success proba-
bility. Furthermore, the actions of one robot do not affect the move-
ment of the other.

It is possible to break this problem in two independent problems:
each robot focuses on learning its own optimal policy and com-
pletely disregards the existence of the other robot. This separation
is possible if the tasks of both robots are independent (the dynam-
ics and rewards for each robot are independent of the state/action
of the other). Each robot can thus be modeled independently as an
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Robot 1 Robot 2

Goal 1Goal 2

Doorway

Figure 1: Simple environment where two agents need to coor-

dinate only around the doorway.

MDP and there is no need to consider interaction between the two
robots.

However, it may happen that, in some situations, the rewards of
one robot do depend on the state/actions of the other robot. In our
example, suppose that the doorway in Figure 1 is too narrow for
both robots to pass simultaneously without some minimal damage.
Therefore, a negative reward may be issued to both robots to dis-
encourage them from simultaneously trying to cross the doorway.
In this situation, it would be desirable that the robots learned to
coordinate. In the continuation we formalize problem such as the
one just described and propose an extension of Q-learning that, us-
ing minimal extra information, is able to successfully learn how to
coordinate.

3.1 Markov games with partial observability

Let Γ =
(
N,X , (Ak), P, (rk), γ

)
be a Markov game with fi-

nite state-space X . We assume that, at each time instant, each
agent has only access to a local observation of the state of the
system. In particular, we assume that the state-space X can be
factored as X = ×N

k=1Xk; the state at time instant t is a vec-
tor X(t) =

(
X1(t), . . . , XN (t)

)
, where Xk(t) corresponds to the

“local state” as perceived by agent k. Although the actual state of
the game can be inferred from the joint observations of all agents,
each agent has partial observability in that its individual perception
of the state is not enought to unambiguously determine the actual
state of the game.

In line with our sparse interaction framework, we consider each
rk to be decomposable as

rk(x, a) = rI
k(xk, ak) + rC(x, a),

where rI
k is the individual component of the reward function, that

depends only on the local state and action of agent k, and rC is
a common component of the reward function, that depends on the
overall state of the game and on the actions of all agents. In a sense,
the individual component encodes the individual goal of agent k
while the common component determines the situations in which
interaction must occur.2 Still keeping in mind the sparse interaction
framework, we also consider that the dynamics of the game can
be decoupled in terms of the individual actions of the agents by
assuming the kth component of X(t+1) to depend only on Xk(t)
and Ak(t).
2The common component, as considered here, is the same for all
agents. In a more general setting, this component need not be the
same for all agents, but we focus on the simpler case in which it is.
We further discuss this topic in Section 5.

The Markov game thus defined is, in its essence, similar to an
interaction-driven Markov game (IDMG) [16]. In the planning ap-
proach to IDMGs featured in [16] the states in which the agents
are able to communicate/coordinate are included in the model def-
inition. In those states, each agent shares its local state informa-
tion that other agents can then use to coordinate. Since the IDMG
model is assumed known, this means that each agent can consider
the action that the other agent will take to plan accordingly.

Unlike the approach in [16], we do not assume any knowledge
on the structure of the problem. Instead, we assume that the agents
know nothing about the transition probabilities or about any of the
reward functions rk. Each agents must therefore learn from experi-
ence not only its “individual goal” but also in which states it should
coordinate with the other agents. In [14] a somewhat similar idea
was explored, in which the agents determine at execution time how
to best employ communication to execute a centralized plan in a
distributed fashion. Due to the lack of model knowledge in our ap-
proach, our algorithm does not rely on any previously computed
plan but learns from experience those situations in which commu-
nication can actually lead to an improvement in performance.

Several other authors have explored locality of interaction in dif-
ferent ways. In [8, 9], the authors describe local interactions be-
tween the agents using coordination graphs. These coordination
graphs take advantage of an additive decomposition of the joint re-
ward function to allow the agents to act independently, whenever
that does not imply a loss of optimality. In [10,11], the authors fur-
ther explore the use of coordination graphs, which are now learned
from the interactions of the agents. In [6], the authors propose a
hierarchical multiagent RL algorithm that takes advantage of sub-
tasks that can be learned individually by the agents, allowing coor-
dination to be addressed only at the level of the main task.

However, the approach followed here is fundamentally different
from those described above in several aspects. First of all, sev-
eral of the above works consider problems in which the joint-state
and joint-action are fully observable. Although the above methods
do explore locality of interaction, most still rely heavily on (often
implicit) assumptions of joint-state and joint-action observability,
even if only at a local level. In our case, we do not assume joint-
action observability, although the algorithm does explore joint-state
observability whenever possible.

A second difference is that, in general, the agents in our set-
ting do not share the same reward function. This is a fundamental
difference that drives the work in this paper away from standard
frameworks addressing multiagent decision making in partially ob-
servable scenarios (such as Dec-MDPs or Dec-POMDPs). It also
distinguishes the work in this paper from most of those surveyed
above.

Finally, it is important to point out that in several of the afore-
mentioned references, the situations in which the agents should in-
teract/coordinate are assumed predefined. This is not the case in
this paper, as one of the main goals of our algorithm is precisely to
learn when and how the agents should coordinate.

3.2 Learning to coordinate

We start by considering the simple case of a 2-agent MG Γ =(
2,X , (Ak), P, (rk), γ

)
verifying the assumptions in the previous

subsection. Notice that, if rC ≡ 0, then each agent can use stan-
dard Q-learning to learn its optimal individual policy π∗

k , and the
policy π∗ = (π∗

1 , π∗
2) will be optimal for Γ. However, if the reward

rC(x, a) �= 0 in some state x, the policy learned by each agent us-
ing Q-learning and discarding the existence of the other agent will,
in general, be suboptimal. In fact, the optimal policy in that case
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Algorithm 1 Learning algorithm for agent k

1: Initialize Q∗
k and QC

k ;
2: Set t = 0;
3: while (FOREVER) do

4: Choose Ak(t) using πe;
5: if Ak(t) = COORDINATE then

6: if ActivePercept = TRUE then

7: Âk(t) = πg(QC
k , X(t));

8: else

9: Âk(t) = πg(Q∗
k, Xk(t));

10: end if

11: Sample Rk(t) and Xk(t + 1);
12: if ActivePercept = TRUE then

13: QLUpdate
(
QC

k ; X(t), Âk(t), Rk(t), Xk(t + 1), Q∗
k

)
;

14: end if

15: else

16: Sample Rk(t) and Xk(t + 1);
17: end if

18: QLUpdate
(
Q∗

k; Xk(t), Ak(t), Rk(t), Xk(t + 1), Q∗
k

)
;

19: t = t + 1;
20: end while

must take into account whatever the other agent is doing.
As stated in the previous subsection, we are interested in ad-

dressing those situations in which the interaction between the two
agents is sparse. In terms of reward function, this translates into
having a sparse function rC with a bounded influence over X . This
means that, in order to perform optimally, each agent needs only
to coordinate “around” those states x for which r(x, a) �= 0. This
coordination will require each agent to have access to state/action
information about the other agent.

To this purpose, we augment the individual action-space of each
agent with one “pseudo-action,” henceforth referred as the COOR-
DINATE action. This pseudo-action consists of two steps:

• The first step of COORDINATE is an active perception step, in
which the agent tries to determine the local state information
of the other agent;

• The second step of COORDINATE is a coordinating step, in
which the agent makes use of the local state information from
the other agent (if available) to choose one of its primitive
actions.

We emphasize that the active perception step of the COORDINATE
action need not succeed; whether or not it actually succeeds is envi-
ronment-dependent. Going back to our robot navigation example,
the active perception step can consist for example on the use of a
onboard camera to localize the other robot. In this case, the robot
will be able to localize the other robot only when the latter is in the
field-of-view of the camera (which will depend on the configuration
of the environment, on the position of the other robot, etc). Another
possibility consists on the use of explicit communication, in which
one robot requires the other robot to divulge its location.

Going back to our algorithm, each agent k will now use Q-
learning to estimate Q∗

k(xk, ak) for all xk ∈ Xk and all ak ∈
Ak ∪ {COORDINATE}. It remains only to describe how the coor-
dinating step of the COORDINATE action takes place. The role of
the coordinating step is to use the local state information from the
other agent (provided by the active perception step) to guide the
actual choice of the actions in Ak. To this purpose, each agent k
keeps a second Q-function that we henceforth denote by QC

k . It is
important to observe that QC

k is defined in terms of the immediate

reward of agent k and the value of agent k’s policy from the next
instant on. However, since this policy is defined in terms of Q∗

k,
this means that the values of QC

k at different state-action pairs are
independent. This can be seen in the following relation

QC
k (x, a) = rk(x, ak) + γ

∑
yk∈Xk

Pa
k(xk, yk) max

bk∈Ak

Q∗
k(yk, bk).

The above relation can be used in a Q-learning-like update to es-
timates the value QC

k associated with each individual action ak ∈
Ak in each joint state (x1, x2).

Our algorithm is summarized in Algorithm 1. We denoted by
π� the learning policy (i.e., a policy that ensures sufficient explo-
ration, such as an ε-greedy policy) and by πg(Q, ·) the greedy pol-
icy with respect to function Q. The flag ActivePercept is true if
the active perception step is successful and the general instruction
QLUpdate(Q; x, a, r, y, Q′) is equivalent to

Q(x, a) = (1 − α)Q(x, a) + α(r + γ max
b

Q′(y, b)).

Several important observations are in order. First of all, notice
that the update of QC

k uses the estimates of Q∗
k. As seen before,

this is because the individual action at the next step will depend
on the values in Q∗

k and not on QC
k . In other words, the values

in QC
k only determine the one-step behavior of the COORDINATE

action, and therefore there is not a “direct” dependency among en-
tries in QC

k corresponding to different states/actions (see Fig. 2 for
an illustration). This is particularly useful since it implies that, un-
like algorithms that learn directly on the joint state-action-space,
our matrix QC

k will be sparse and require approximately the same
computational sampling effort than that necessary to learn Q∗

k.

Q∗
k

QC
k

Global Q-function

“Local” Q-function

Figure 2: Illustration of the dependence between the “global”

Q-function, Q∗
k, and the “local” Q-function, QC

k . The value of

the COORDINATE action in Q∗
k at a state x depends on QC

k (x).

This, in turn depends on Q∗
k(y) where y is a successor state of

x. Notice that there is no inter-state dependency in QC
k .

Secondly, notice that the COORDINATE action does not use any
joint action information, only joint state information. This fact and
the aforementioned independence of the components of QC

k asso-
ciated with different xk makes the learning of QC

k similar to a gen-
eralized fictitious play process [12].

Finally, we conclude by referring that, so far, we have described
how to apply this algorithm for 2-agent MGs. In MGs with N > 2
agents and since the local state information from the other agents
arises from an active perception step, we consider that each agent
can only perceive the local state information concerning one other
agent. This has two obvious implications: first of all, in problems
for which coordination requires state information concerning more
than two agents, the performance of our algorithm is expected to
decrease. Interestingly, however, our experimental results show
that the effect of this coupling in problems with more than two
agents may be less noticeable than one would expect. Another im-
plication is that we can apply Algorithm 1 without modification, by
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disregarding the identity of the other agent (assuming the agent set
to be homogeneous) and merely considering that the local informa-
tion obtained by active perception concerns some other agent.3

4. RESULTS

To test our algorithm, we applied it in several test scenarios of
different complexity (both in terms of size, number of agents and
coordination requirements). The different scenarios are depicted in
Figures 1, 3, and Figures 4.

Doorway

Robot 1 Robot 2

Goal 1Goal 2

(a) Env. 2 (2 robots)

Doorway

Robot 1 Robot 2

Goal 1Goal 2

Goal 3

Robot 3Robot 4

Goal 4

(b) Env. 2 (4 robots)

Figure 3: Scenarios used in the experiments.

In the first scenario, two robots must move in an environment
consisting of 21 states. As depicted in Figure 1, each robot starts in
one corner of the environment and must move to the opposite cor-
ner, receiving a reward of 10 for succeeding. If both robots simulta-
neously end up in the shaded state (the doorway) they both receive
a penalty of −20 (a “miscoordination” penalty). Each robot can
choose between 4 possible actions, each moving the robot in one
of the 4 possible directions (North, South, East and West). These
actions succeed with a 0.8 probability and fail with a 0.2 proba-
bility. The second test scenario is similar to the first test scenario,
only considering a different environment (this time with 36 states).
In this new environment there are 4 doorways granting a penalty to
both agents if both simultaneously end up in the same doorway. In
the third test scenario we placed 4 robots in the 36-state environ-
ment. In all scenarios, and in order to disencourage the excessive
use of the COORDINATE action, each agent receives a penalty of
−1 every time it chooses this action. Notice that the use of the
“excessive” use of the COORDINATE action impacts the sparsity of
QC

k , which is undesirable for large problems.
We ran our algorithm in each of the environments for 104 time

steps. For comparison purposes, we also ran standard Q-learning
with one robot at a time (which means that the robots never expe-
rience the miscoordination penalty) and with all robots simultane-
ously.4

3We remark, however, that if we consider more general active per-
ception processes – i.e., the agent is actually able to perceive the
state of all other agents – the algorithm can be trivially modified
to address coordination of any number of agents, with an obvious
tradeoff in terms of the memory requirements of the algorithm.
4Due to the general lack of knowledge about the global state in-
formation, the agents in the two algorithms used for comparison
are independent learners and not joint action learners in the sense
of [5].

Table 1: Performance of the different algorithms in the 3 test

scenarios by applying the learned policy during 100 time-step

episodes. The values presented were averaged over all the

robots.

Learning Total disc. reward

Indiv. 119.5 ± 12.5
Env. 1 (2R) Non-coop. 119.3 ± 12.2

Coop. 126.3 ± 10.1

Indiv. 103.3 ± 26.3
Env. 2 (2R) Non-coop. 102.3 ± 11.4

Coop. 110.9 ± 9.6

Indiv. 102.1 ± 13.6
Env. 2 (4R) Non-coop. 104.1 ± 12.4

Coop. 111.2 ± 9.7

We then evaluated each of the learned policies in the several en-
vironments, for 100 time step episodes. We point out that, for eval-
uation purposes, all learned policies (Coord., Indiv. and Uncoord.)
were evaluated in the original problem, i.e., with two/four robots
moving simultaneously in the environment. For averaging pur-
poses, we performed 1, 000 independent Monte-Carlo trials. Ta-
ble 2 presents the results obtained for the single-robot Q-learning
(Indiv.), the multi-robot Q-learning (Non-coop.) and our algorithm
(Coop.). The results in Table 1 show that our algorithm outper-
forms both other methods. The superior performance of our algo-
rithm is perceivable in two distinct ways: (i) the average perfor-
mance observed in all environments is superior to that of the other
algorithms; and (ii) the reliability of the observer performance is
much superior in our algorithm. The latter aspect is observable by
noticing the larger variance in the other algorithms. This means
that the “ability” of the policies computed by the other methods
to avoid miscoordinations greatly depends on chance (a lucky run
may yield a large reward while an unlucky run may bring a large
penalty).

Table 2: Performance of the different algorithms in the 3 test

scenarios, now in terms of time-to-goal and number of misco-

ordinations.

Learning Time to goal Miscoord.

Indiv. 10.02 ± 1.57 0.40 ± 0.52
Env. 1 (2R) Non-coop. 10.02 ± 1.58 0.41 ± 0.54

Coop. 9.94 ± 1.57 0.00 ± 0.00

Indiv. 12.45 ± 1.68 0.12 ± 0.33
Env. 2 (2R) Non-coop. 12.45 ± 1.77 0.12 ± 0.33

Coop. 12.51 ± 1.72 0.00 ± 0.00

Indiv. 12.46 ± 1.75 0.47 ± 0.59
Env. 2 (4R) Non-coop. 12.49 ± 1.74 0.49 ± 0.59

Coop. 12.49 ± 1.77 0.00 ± 0.00

To gain a clearer understanding of the results in Table 1 and
understand how miscoordinations impact the performance of the
robots, let us consider the time to goal and the average number of
miscoordinations in each of the three test scenarios, found in Ta-
ble 2). Noticeably, our algorithm exhibits a similar performance in
terms of time to goal, which means that the inclusion of the COOR-
DINATE action does not significantly affect the time that the robots
take to reach the corresponding goal. Another interesting aspect to
observe is that, in all environments, our algorithm exhibits no mis-
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(a) CIT (2 robots) (b) CMU (2 robots) (c) ISR (2 robots)

(d) MIT (2 robots) (e) PENTAGON (2 robots) (f) SUNY (2 robots)

coordinations. This means that the robots are able to choose their
path so as to completely avoid the coordination penalties, and this
without significant cost in terms of the average time to goal.

Another interesting aspect to notice is that the existence of 4
robots in the 36-state scenario does not seem to impact negatively
the performance of the team. This is an interesting indicator that,
even if our algorithm only considers coordination between pairs of
robots, this seems to be sufficient to ensure coordination at least in
some problems.

We then tested the algorithm in several large navigation scenarios
used as benchmarks in the POMDP literature. These scenarios have
different sizes ranging from 43 states in the ISRenvironment (corre-
sponding to 1, 849 total joint states) to 133 in the CMUenvironment
(corresponding to a total of 17, 689 joints states). The shaded cells
correspond to doorways, and the agents get a penalty if both stand
in any of the shaded cells simultaneously. In each of this scenario,
the crosses indicate the starting state for the two robots. The goal
for each robot is to move to the starting state of the other robot. As
before, each agent receives a penalty of −1 every time it chooses
this action.

We ran our algorithm in each of the larger environments for 105

time steps. As before, for comparison purposes, we also ran stan-
dard Q-learning with one robot at a time and with all robots simul-
taneously. We then evaluated each of the learned policies in the
several environments, for 100 time step episodes. We ran 1, 000
independent Monte-Carlo trials and present the average results in
Table 3.

One fundamental difference between these larger environments
and those in Figures 1 and 3 is that interaction in these environ-
ment is much sparser than that in the smaller environments. In
other words, in some of the test scenarios (e.g., CIT, ISR), the envi-
ronment and the initial/goal positions for both robots are such that
explicit coordination actions are not really necessary to avoid mis-
coodinations. This means that both the individualistic Q-learners
and the non-cooperative Q-learners should be able to attain a good
performance. On the other hand, these scenarios allow us to per-
ceive whether, in situations where no coordination is necessary, the
agents are indeed able to learn to act independently.

As seen in Table 3, all methods attain similar performance in
all large environments. This is important because it indicates that
no coordination actions are used by our algorithm (or, otherwise,

Table 3: Performance of the different algorithms in the large

test scenarios, obtained with the learned policy during 100

time-step episodes. The values presented were averaged over

all the robots.

Learning Total disc. reward

Indiv. 111.2 ± 9.9
CIT (2R) Non-coop. 111.1 ± 9.9

Coop. 111.3 ± 9.9

Indiv. 27.4 ± 5.8
CMU (2R) Non-coop. 27.1 ± 4.6

Coop. 27.5 ± 4.6

Indiv. 143.5 ± 10.0
ISR (2R) Non-coop. 143.4 ± 9.8

Coop. 143.6 ± 9.9

Indiv. 66.7 ± 7.9
MIT (2R) Non-coop. 66.6 ± 7.9

Coop. 66.7 ± 7.9

Indiv. 161.1 ± 12.3
PENTAGON (2R) Non-coop. 160.8 ± 12.6

Coop. 163.0 ± 9.1

Indiv. 111.2 ± 9.7
SUNY (2R) Non-coop. 111.3 ± 9.8

Coop. 111.4 ± 9.8

the total discounted reward would be inferior to that of the other
methods). This means that, as intended, the agents are able learn
to coordinate only when coordination is necessary to attain good
performance.

Finally, we also analyzed how the increasing penalties for mis-
coordination affect the performance of the robots in all 9 scenarios.
To that purpose, we ran all three learning algorithms for different
values of the miscoordination penalty and evaluated the obtained
policies. Figure 4 depicts the results obtained as we vary the mis-
coordination penalty from 0 to −100.

The remarkable aspect to keep in mind is that, for a penalty of
0, all methods are optimal, since the tasks of the different robots
are completely decoupled. Notice, however, that the performance
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(a) Environment 1 (2 robots)
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(b) Environment 2 (2 robots)
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(c) Environment 2 (4 robots)
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(d) CIT (2 robots)
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(e) CMU (2 robots)
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(f) ISR (2 robots)
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(g) MIT (2 robots)
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(h) PENTAGON (2 robots)

Figure 4: Evolution of the performance of the algorithm as the penalty for miscoordination increases, both in terms of average

reward and variance, for several of the test scenarios. The numbers in the xx-axis correspond to powers of 10. Also, the value in the

leftmost part of the plots corresponds to a penalty of 0 (and not 10−2).
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of our algorithm remains approximately constant as the miscoor-
dination penalty is increased. This means that, in the above sce-
narios, our method is actually able to attain optimal performance,
by using minimum information concerning the state of the other
agents in the environment. Notice also that, in several environ-
ments, the reliability of the performance of the individualistic and
non-coordinated policies (indicated by the variance) greatly de-
creases as the miscoordination penalty increases,

Notice also that, as expected, the non-cooperative Q-learning al-
gorithm is somewhat able to surpass the individualistic Q-learning
in several scenarios. This is particularly evident by observing the
performance as the miscoordination penalty increases, and can be
interpreted as having the non-cooperative agents to act with “in-
creasing caution” due to the penalties experienced during learning.

5. DISCUSSION
In this paper we presented a learning algorithm that explores the

sparse interaction observed in many multiagent domains. This is
done by means of a “pseudo-action,” the COORDINATE action, that
allows each agent to use local state information from other agents
to choose its actions so as to avoid miscoordination problems. Our
experimental results show that our algorithm is successfully able to
coordinate in several scenarios with multiple agents.

Our results also launch several interesting questions to be ad-
dressed in future work. One first interest issue to be explored is
concerned with the dependence of the performance of the algorithm
with the cost of the COORDINATE action. In fact, by increasing the
cost of the COORDINATE action, the agents must learn a trade-off
between the benefits arising from good coordination and the cost of
that same coordination. This bares a close relation with the prob-
lem of exchanging reward by information arising in the POMDP
literature [1] and it would be interesting to bring analyze how the
problem addressed here extends to situations where further partial
state observability is considered.

Another interesting aspect to be explored is related with the per-
formance guarantees of the algorithm. As remarked in Section 3,
the parallel learning process taking place when the agent executes
the COORDINATE action during learning bares significant resem-
blances with a generalized fictitious play behavior. It would be in-
teresting to perceive how the convergence guarantees of such pro-
cesses can be translated to our particular algorithm. Another related
issue that should be explored in the future is concerned with the
limitations of the algorithm. In the particular scenarios used in this
paper, the algorithm exhibited a sound performance. However, and
since no formal guarantees exist at this point on the performance of
the algorithm, it would be interesting to understand the main lim-
itations associated with the algorithm. The scenarios used in this
paper required only very localized coordination. We anticipate that
problems in which coordination is required at a more global level
may cause the performance of the algorithm to decrease.

Finally, in view of the completely “independent” way by which
the agents learn, it is reasonable to expect that the algorithm should
still be useful if the common reward function rC is not the same
for all agents, although it still depends on the actions of all agents.
This means that the algorithm could be applied to a broader class of
MGs than that explored here. Another interesting aspect to explore
is the consideration of scenarios in which the agents are not com-
pletely independent (in terms of dynamics) but exhibit some weak
coupling (for example in the states where interaction occurs).
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